"Gamification" of teaching science, technology, engineering and mathematics: Conceptual cartography

Authors

  • Miguel Ángel Guzmán-Rivera Instituto Tecnológico de Querétaro
  • Alexandro Escudero-Nahón Universidad Autónoma de Querétaro
  • Sandra Luz Canchola-Magdaleno Universidad Autónoma de Querétaro

DOI:

https://doi.org/10.31391/S2007-7033(2020)0054-002

Keywords:

gamification, conceptual cartography, educative serious games, game-based learning

Abstract

The purpose of this documentary research, carried out with the method of Conceptual Cartography, was to make a conceptual study of the term “gamification”, specifically in the learning of science, technology, engineering and mathematics (STEM). A total of 287 texts were obtained and finally 39 documents were selected for revision. Eight axes of analysis were applied: notion, categorization, characterization, differentiation, division, linkage, methodology and exemplification. The result was a systematization of the concept “gamification” and its methodological aspects for the teaching of STEM. The main finding was a differentiation between “gamification”, “educative serious games” and “game-based learning”. This would allow planning differentiated educational stra- tegies according to specific teaching objectives.

Downloads

Download data is not yet available.

Author Biographies

Miguel Ángel Guzmán-Rivera, Instituto Tecnológico de Querétaro

Maestro en Tecnología Educativa. Docente del Instituto Tecnológico de Querétaro. Línea de investigación: desarrollo de software educativo.

Alexandro Escudero-Nahón, Universidad Autónoma de Querétaro

Doctor en Educación por la Universidad Autónoma de Barcelona. Profesor-investigador de la Universidad Autónoma de Querétaro. Miembro del SNI. Línea de investigación: análisis cualitativos de la tecnología educativa.

Sandra Luz Canchola-Magdaleno, Universidad Autónoma de Querétaro

Doctora en Tecnología Avanzada por el Instituto Politécnico Nacional/Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Querétaro. Profesora investigadora de la Universidad Autónoma de Querétaro. Línea de investigación: desarrollo de software educativo y programación paralela.

References

Adams, D. M., & Clark, D. B. (2014). Integrating self-explanation functionality into a complex game environment: Keeping gaming in motion. Computers & Education, 73, 149–159. https://doi.org/10.1016/j.compedu.2014.01.002

Ameerbakhsh, O., Maharaj, S., Hussain, A., & McAdam, B. (2018). A comparison of two methods of using a serious game for teaching marine ecology in a university setting. International Journal of Human-Computer Studies. https://doi.org/10.1016/j.ijhcs.2018.07.004

Anderson, C. G., Dalsen, J., Kumar, V., Berland, M., & Steinkuehler, C. (2018). Failing up: How failure in a game environment promotes learning through discourse. Thinking Skills and Creativity. https://doi.org/10.1016/j.tsc.2018.03.002

Annetta, L., Lamb, R., Minogue, J., Folta, E., Holmes, S., Vallett, D., & Cheng, R. (2014). Safe science classrooms: Teacher training through serious educational games. Information Sciences, 264, 61–74. https://doi.org/10.1016/j.ins.2013.10.028

Anupam, A., Gupta, R., Naeemi, A., & JafariNaimi, N. (2018). Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics. IEEE Transactions on Education, 61(1), 29–37. https://doi.org/10.1109/TE.2017.2727442

Bergeron, B. (2006). Appendix A: glossary. En Developing serious games (p. 398). Hingham: Charles River Media.

Bermeo Yaffar, F., Hernández Mosqueda, S., & Tobón, S. (2016). Análisis documental de la V heurística mediante la cartografía conceptual. Ra Xim Hai, 12, 103–121. https://doi.org/10.35197/rx.12.01.e3.2016.05.fb

Berns, A., Palomo-Duarte, M., Dodero, J. M., & Valero Franco, C. (2013). Using 3-D online games to assess students’ foreign language acquisition and communicative competence. https://doi.org/10.1007/978-3-642-40814-4-3

Bogost, I. (2011). Gamification Is Bullshit. The Atlantic. Recuperado de https://www.researchgate.net/publication/273946902_Gamification_Is_Bullshit

Braghirolli, L. F., Ribeiro, J. L. D., Weise, A. D., & Pizzolato, M. (2016). Benefits of educational games as an introductory activity in industrial engineering education. Computers in Human Behavior, 58, 315–324. https://doi.org/10.1016/j.chb.2015.12.063

Bybee, R. (2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 70(1), 30–35.

Chappin, E. J. L., Bijvoet, X., & Oei, A. (2017). Teaching sustainability to a broad audience through an entertainment game – The effect of Catan: Oil Springs. Journal of Cleaner Production, 156, 556–568. https://doi.org/10.1016/j.jclepro.2017.04.069

Chu, S. L., Angello, G., Saenz, M., & Quek, F. (2017). Fun in Making: Understanding the experience of fun and learning through curriculum-based Making in the elementary school classroom. Entertainment Computing, 18, 31–40. https://doi.org/10.1016/j.entcom.2016.08.007

de-Marcos, L., García-Cabot, A., & García, E. (2017). Towards the social gamification of e-learning: A practical experiment, 33, 66–73. Recuperado de https://www.researchgate.net/publication/316664417_Towards_the_social_gamification_of_e-learning_A_practical_experiment

de Carvalho, C. V., Caeiro-Rodriguez, M., Llamas Nistal, M., Hromin, M., Bianchi, A., Heidmann, O., … Metin, A. (2018). Using Video Games to Promote Engineering Careers. International Journal of Engineering Education, 34(2, A), 388–399.

Derboven, J., Zaman, B., Geerts, D., & Grooff, D. De. (2016). Playing educational math games at home: The Monkey Tales case. Entertainment Computing, 16, 1–14. https://doi.org/10.1016/j.entcom.2016.05.004

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From Game Design Elements to Gamefulness: Defining Gamification. En Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek 2011 (Vol. 11, pp. 9–15). https://doi.org/10.1145/2181037.2181040

Díaz-Barriga, F., & Hernández, G. (2002). Estrategias docentes para un aprendizaje significativo: Una interpretación constructivista. (2ª ed.). Ciudad de México: McGraw-Hill Interamericana.

Freeman, B., & Higgins, K. (2016). A randomised controlled trial of a digital learning game in the context of a design-based research project. International Journal of Technology Enhanced Learning, 8(3–4), 297–317. https://doi.org/10.1504/IJTEL.2016.10001504

Fuentes Hurtado, M., & González Martínez, J. (2017). Secondary Teachers Training Needs to Implement Gamified Experiences in STEM. RED-Revista de Educación a Distancia, (54). https://doi.org/10.6018/red/54/8

Gauthier, A., Corrin, M., & Jenkinson, J. (2015). Exploring the influence of game design on learning and voluntary use in an online vascular anatomy study aid. Computers & Education, 87, 24–34. https://doi.org/10.1016/j.compedu.2015.03.017

Girard, C., Ecalle, J., & Magnan, A. (2013). Serious games as new educational tools: How effective are they? A meta-analysis of recent studies. Journal of Computer Assisted Learning (Vol. 29). https://doi.org/10.1111/j.1365-2729.2012.00489.x

Hamada, M., & Sato, S. (2011). A Game-based Learning System for Theory of Computation Using Lego NXT Robot. Procedia Computer Science, 4, 1944–1952. https://doi.org/10.1016/j.procs.2011.04.212

Hodges, G. W., Wang, L., Lee, J., Cohen, A., & Jang, Y. (2018). An exploratory study of blending the virtual world and the laboratory experience in secondary chemistry classrooms. Computers & Education, 122, 179–193. https://doi.org/10.1016/j.compedu.2018.03.003

Hung, H.-T. (2017). Clickers in the flipped classroom: bring your own device (BYOD) to promote student learning. Interactive Learning Environments, 25(8), 983–995. https://doi.org/10.1080/10494820.2016.1240090

Huotari, K., & Hamari, J. (2017). A definition for gamification: anchoring gamification in the service marketing literature. Electronic Markets, 27(1), 21–31. https://doi.org/10.1007/s12525-015-0212-z

Jagoda, P., Gilliam, M., McDonald, P., & Russell, C. (2015). Worlding through Play Alternate Reality Games, Large-Scale Learning, and The Source. American Journal of Play, 8(1), 74–100.

Jenson, J., & Droumeva, M. (2016). Exploring Media Literacy and Computational Thinking: A Game Maker Curriculum Study. Electronic Journal of E-Learning, 14(2), 111–121.

Johnson-Glenberg, M. C., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Principles and Implications, 2(1), 24. https://doi.org/10.1186/s41235-017-0060-9

Kangas, M., Koskinen, A., & Krokfors, L. (2017). A qualitative literature review of educational games in the classroom: the teacher’s pedagogical activities. Teachers and Teaching, 23(4), 451–470. https://doi.org/10.1080/13540602.2016.1206523

Kapp, K. (2012). The Gamification of learning and instruction. Game-based methods and strategies for training and education (1st ed.). Pfeiffer.

Kiili, K., Moeller, K., & Ninaus, M. (2018). Evaluating the effectiveness of a game-based rational number training - In-game metrics as learning indicators. Computers & Education, 120, 13–28. https://doi.org/10.1016/j.compedu.2018.01.012

Kim, B., & Ho, W. (2018). Emergent social practices of Singapore students: The role of laughter and humour in educational gameplay. International Journal of Child-Computer Interaction, 16, 85–99. https://doi.org/10.1016/j.ijcci.2018.01.001

Klabbers, J. (2009). Terminological Ambiguity: Game and Simulation. Simulation & Gaming - Simulat Gaming, 40, 446–463. https://doi.org/10.1177/1046878108325500

Kumar, J., & Herger, M. (2013). Gamification at Work: Designing Engaging Business Software (1a ed.). The Interaction Design Foundation. Recuperado de https://www.researchgate.net/publication/262312974_Gamification_at_Work_Designing_Engaging_Business_Software

Lathrop, C., & Mackenzie, M. E. (2001). The Commission on National Security / 21st Century: A Hart-Rudman Comission Primer. Recuperado de https://www.ausa.org/sites/default/files/NSW-01-2-The-Commission-on-National-Security-21st-Century-A-Hart-Rudman-Commission-Primer.pdf

Latulipe, C., Long, B., & Seminario, C. (2015). Structuring Flipped Classes with Lightweight Teams and Gamification. En SIGCSE ’15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 392–397). https://doi.org/10.1145/2676723.2677240

Leandro Eichler, M., Perry, G., Lima Lucchesi, I., & Meléndez, T. (2018). Mobile Game-Based Learning in STEM Subjects.

Lee, J., & Hammer, J. (2011). Gamification in Education: What, How, Why Bother? Academic Exchange Quarterly, 15, 1–5. Recuperado de https://www.researchgate.net/publication/258697764_Gamification_in_Education_What_How_Why_Bother

Lester, J. C., Spires, H. A., Nietfeld, J. L., Minogue, J., Mott, B. W., & Lobene, E. V. (2014). Designing game-based learning environments for elementary science education: A narrative-centered learning perspective. Information Sciences, 264, 4–18. https://doi.org/10.1016/j.ins.2013.09.005

Li, Y., Huang, Z., Jiang, M., & Chang, T.-W. (2016). The Effect on Pupils’ Science Performance and Problem-Solving Ability through Lego: An Engineering Design-based Modeling Approach. Educational Technology & Society, 19(3, SI), 143–156.

Lin, D. T., Park, J., Liebert, C. A., & Lau, J. N. (2015). Validity evidence for Surgical Improvement of Clinical Knowledge Ops: a novel gaming platform to assess surgical decision making. The American Journal of Surgery, 209(1), 79–85. https://doi.org/10.1016/j.amjsurg.2014.08.033

Llorens, F., Durán, F. J., Villagrá, C., Rosique, P., Satorre-Cuerda, R., & Molina-Carmona, R. (2016). Gamification of the Learning Process: Lessons Learned. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, 11, 1. https://doi.org/10.1109/RITA.2016.2619138

Locke, J. (1986). Pensamientos sobre la educación (Traducción). Madrid: Akal.

Marín, I., & Hierro, E. (2013). Gamificación: El poder del juego en la gestión empresarial y la conexión con los clientes. Barcelona: Urano / Empresa Activa.

Mellor, K. E., Coish, P., Brooks, B. W., Gallagher, E. P., Mills, M., Kavanagh, T. J., … Anastas, P. T. (2018). The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters and Reviews, 11(2), 103–110. https://doi.org/10.1080/17518253.2018.1434566

Morley, M. S., Khoury, M., & Savić, D. A. (2017). Serious Game Approach to Water Distribution System Design and Rehabilitation Problems. Procedia Engineering, 186, 76–83. https://doi.org/10.1016/j.proeng.2017.03.213

Morschheuser, B., Hassan, L., Werder, K., & Hamari, J. (2018). How to design gamification? A method for engineering gamified software. Information and Software Technology, 95, 219–237. https://doi.org/10.1016/J.INFSOF.2017.10.015

Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical cognition: Promoting mathematical insight and proof using action and language. Cognitive Research - Principles and Implications, 2. https://doi.org/10.1186/s41235-016-0040-5

New Media Consortium. (2014). Horizon Report, Edición Educación Superior. Recuperado de https://conectate.uniandes.edu.co/images/pdf/2014-nmc-horizon-report-es-official.pdf

Ortiz, M., Chiluiza, K., & Valcke, M. (2016). Gamification in higher education and STEM: A systematic review of literature, 6548–6558. https://doi.org/10.21125/edulearn.2016.0422

Pedersen, M. K., Svenningsen, A., Dohn, N. B., Lieberoth, A., & Sherson, J. (2016). DiffGame: Game-based Mathematics Learning for Physics. Procedia - Social and Behavioral Sciences, 228, 316–322. https://doi.org/10.1016/j.sbspro.2016.07.047

Peng, C., Cao, L., & Timalsena, S. (2017). Gamification of Apollo lunar exploration missions for learning engagement. Entertainment Computing, 19, 53–64. https://doi.org/10.1016/j.entcom.2016.12.001

Perini, S., Luglietti, R., Margoudi, M., Oliveira, M., & Taisch, M. (2018). Learning and motivational effects of digital game-based learning (DGBL) for manufacturing education –The Life Cycle Assessment (LCA) game. Computers in Industry, 102, 40–49. https://doi.org/10.1016/j.compind.2018.08.005

Praet, M., & Desoete, A. (2014). Enhancing young children’s arithmetic skills through non-intensive, computerised kindergarten interventions: A randomised controlled study. Teaching and Teacher Education, 39, 56–65. https://doi.org/10.1016/j.tate.2013.12.003

Revelo, O., Collazos, C. A., & Jiménez-Toledo, J. (2018). La gamificación como estrategia didáctica para la enseñanza/aprendizaje de la programación: un mapeo sistemático de literatura. Lámpsakos, (19), 31–46. https://doi.org/10.21501/21454086.2347

Riera, B., Annebicque, D., & Vigário, B. (2016). HOME I/O: an example of Human-Machine Systems concepts applied to STEM education. IFAC-PapersOnLine, 49(19), 233–238. https://doi.org/10.1016/j.ifacol.2016.10.530

Rodríguez, M., Díaz, I., González, E. J., & González-Miquel, M. (2018). Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 24, 7–12. https://doi.org/10.1016/j.ece.2018.06.003

Rowe, E., Asbell-Clarke, J., Baker, R. S., Eagle, M., Hicks, A. G., Barnes, T. M., … Edwards, T. (2017). Assessing implicit science learning in digital games. Computers in Human Behavior, 76, 617–630. https://doi.org/10.1016/j.chb.2017.03.043

Sailer, M., Hensen, J. U., Mayr, S., & Mandl, H. (2017). How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, (69), 371–380. https://doi.org/10.1016/j.chb.2016.12.033

Sánchez-Martín, J., Cañada-Cañada, F., & Dávila-Acedo, M. A. (2017). Just a game? Gamifying a general science class at university: Collaborative and competitive work implications. Thinking Skills and Creativity, 26, 51–59. https://doi.org/10.1016/j.tsc.2017.05.003

Seixas, L., Gomes, A., & Melo Filho, I. (2016). Effectiveness of Gamification in the Engagement of Students. Computers in Human Behavior, 58, 48–63. https://doi.org/10.1016/j.chb.2015.11.021

Shih, J.-L., Huang, S.-H., Lin, C.-H., & Tseng, C.-C. (2017). STEAMing the Ships for the Great Voyage: Design and Evaluation of a Technology-integrated Maker Game. Interaction Design and Architectures, (34, SI), 61–87.

Smith, K., Shull, J., Dean, A., Shen, Y., & Michaeli, J. (2016). SiGMA: A software framework for integrating advanced mathematical capabilities in serious game development. Advances in Engineering Software, 100, 319–325. https://doi.org/10.1016/j.advengsoft.2016.08.007

Smithsonian Science Education Center. (2019). The STEM Imperative. Recuperado de https://ssec.si.edu/stem-imperative

Steghöfer, J.-P., Burden, H., Alahyari, H., & Haneberg, D. (2017). No silver brick: Opportunities and limitations of teaching Scrum with Lego workshops. Journal of Systems and Software, 131, 230–247. https://doi.org/10.1016/j.jss.2017.06.019

Subhash, S., & Cudney, E. (2018). Gamified Learning in Higher Education: A Systematic Review of the Literature. Computers in Human Behavior (Vol. 87). https://doi.org/10.1016/j.chb.2018.05.028

Taub, M., Azevedo, R., Bradbury, A. E., Millar, G. C., & Lester, J. (2018). Using sequence mining to reveal the efficiency in scientific reasoning during STEM learning with a game-based learning environment. Learning and Instruction, 54, 93–103. https://doi.org/10.1016/j.learninstruc.2017.08.005

The EU Framework for Research and Innovation. (2011). Proposal for a regulation of the European Parliament and of the council establishing Horizon 2020 - The Framework Programme for Research and Innovation (2014-2020). Recuperado de https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011PC0809&from=EN

Tobón, S. (2012). Cartografía conceptual: estrategia para la formación y evaluación de conceptos y teorías. México: CIFE.

Valle, A., González-Cabanach, R., Cuevas-González, L. M., & Fernández- Suárez, A. P. (1998). Las estrategias de aprendizaje: características básicas y su relevancia en el contexto escolar. Revista de Psicodidáctica, (6), 53–68. Recuperado de https://www.redalyc.org/pdf/175/17514484006.pdf

Vate-U-Lan, P. (2015). Transforming Classrooms through Game-Based Learning: A Feasibility Study in a Developing Country. International Journal of Game-Based Learning, 5(1), 46–57. https://doi.org/10.4018/ijgbl.2015010104

Velázquez, G., & Salgado, J. (2016). Innovación tecnológica: un análisis del crecimiento económico en México (2002-2012: proyección a 2018). Análisis Económico, XXXI(78), 145–170. Recuperado de http://www.analisiseconomico.azc.uam.mx/index.php/rae/article/view/46

Villagrasa, S., Fonseca, D., Redondo, E., & Duran, J. (2014). Teaching case of gamification and visual technologies for education. Journal of Cases on Information Technology, 16(4), 38–57. https://doi.org/10.4018/jcit.2014100104

Vlachopoulos, D., & Makri, A. (2017). The effect of games and simulations on higher education: a systematic literature review. International Journal of Educational Technology in Higher Education, 14(1), 22. https://doi.org/10.1186/s41239-017-0062-1

Whalen, K. A., Berlin, C., Ekberg, J., Barletta, I., & Hammersberg, P. (2018). ‘All they do is win’: Lessons learned from use of a serious game for Circular Economy education. Resources, Conservation and Recycling, 135, 335–345. https://doi.org/10.1016/j.resconrec.2017.06.021

Wiggins, B. (2016). An Overview and Study on the Use of Games, Simulations, and Gamification in Higher Education. International Journal of Game-Based Learning (Vol. 6). https://doi.org/10.4018/IJGBL.2016010102

Zatarain Cabada, R. (2018). Reconocimiento afectivo y gamificación aplicados al aprendizaje de lógica algorítmica y programación. Revista Electrónica de Investigación Educativa, 20(3), 115–125. Recuperado de https://www.researchgate.net/publication/327534627_Reconocimiento_afectivo_y_gamificacion_aplicados_al_aprendizaje_de_Logica_algoritmica_y_programacion

Published

2020-01-22